

Устройства встроенного саморемонта КМОП СОЗУ: разработка и способы применения

Докладчик:

Щигорев Л.А.

План доклада

 Введение. Обоснование актуальности исследования и разработки устройств встроенного саморемонта памяти (УВСР) СОЗУ

Глава 1. Сравнение методов обхода поврежденных ячеек СОЗУ

 Глава 2. Метод проектирования УВСР, работающего с УВСТ без информации о расположении поврежденных ячеек памяти, ориентированный на сокращение времени поиска корректной конфигурации резервных элементов

 Глава 3. Методы проектирования УВСР, работающих с УВСТ с учетом информации о расположении поврежденных ячеек памяти, ориентированные на сокращение времени поиска корректной конфигурации резервных элементов и на сокращение аппаратурных затрат

 Глава 4. Комбинированные методы повышения сбое- и отказоустойчивости элементов СОЗУ, включающих в себя устройства саморемонта памяти

Введение.

Обоснование актуальности исследования и разработки устройств встроенного саморемонта памяти (УВСР) СОЗУ

Многоядерные СБИС

В НТЦ «Модуль» ведутся разработки многоядерных СБИС, включающих:

- ▶ЦПУ (ARM, PPC)
- ▶ ЦОС (NEUROMATRIX)

 Дополнительные устройства (контроллеры памяти, периферийных интерфейсов, аппаратные блоки)

Например, СБИС ДЦТС (К1879ХБ1Я)

Элементы СОЗУ

Могут занимать до 75% площади СнК (Semico Research Crop.)

Основные источники дефектов

Основной фактор снижения ВГД

Способы обхода поврежденных элементов СОЗУ

- Резервные элементы (*Redundancy*) Столбцы и/или строки
- Устройства на базе кодов обнаружения и коррекции ошибок (ECC)

Характер парируемых ошибок? Аппаратурные затраты? Временные затраты?

Глава 1. Сравнение методов обхода поврежденных ячеек СОЗУ

Мультиплексирование (MUX) – «любой на любой»

© RC MODULE 8

Сдвиг (SHIFT) – на одну позицию

Схема SHIFT

Коды коррекции ошибок (ЕСС)

Single Error Correction – Single Error Detection (SEC-SED)

Резервные элементы или Коды коррекции?

- Блоки памяти SRAM 4Kx<*num_words*>, где *num_words* = 8, 16, 32, 64
- Способы обхода:
 - ► ECC: SEC-SED,
 - RED:MUX 1κ, MUX 2κ, MUX 4κ, SHIFT
- 28 nm, 5 углов (LPLT, LPHT, TT, HPLT, HPHT)
- CAIIP: Cadence Encounter RTL Compiler

Время выборки данных

□ LPLT □ LPHT

🛛 TT

■ HPLT

DHPHT

Время выборки данных

Аппаратурные затраты

Выводы по главе 1

- При введении рассмотренных средств парирования отказов время выборки увеличивается на 10...15% для варианта SHIFT, в 2,5...3,0 раза для вариантов ECC-SEC и MUX4, в 1,9...2,5 раза для варианта MUX2 и в 1,7...2,2 раза для варианта MUX1
- При парировании одиночных отказов вариант BISR-SHIFT обеспечивает время выборки в 1,5 раза меньше, но занимает в 2 раза большую дополнительную площадь по сравнению с вариантом BISR-MUX1. Вариант ECC-SEC имеет в 2...3 раза большее время выборки и в 1,8...2,1 раза большую дополнительную площадь по сравнению с вариантом BISR-SHIFT, но не требует введения блоков УВСТ, УВСР

Выводы по главе 1

- Относительная величина затрат площади кристалла при введении средств парирования отказов зависит от количества вводимых дополнительных битов и разрядности хранящихся слов N. При увеличении N дополнительные затраты площади существенно уменьшаются. При значениях N = 32 и более бит, возрастание площади кристалла не превышает 17%
- MUX4 и ECC-SEC имеют близкие значения времен выборки и дополнительной площади. При этом MUX4 обеспечивает парирование 4 отказов, но требует введения блоков УВСТ и УВСР
- RED предпочтительнее ECC для обхода отказавших ячеек памяти в качестве способа повышения ВГД

элементов

УВСТ без информации о расположении поврежденных ячеек памяти, ориентированный на сокращение времени поиска корректной конфигурации резервных

Метод проектирования УВСР, работающего с

Глава 2.

Схема использования УВСР(BISR)

Резервные столбцы

МАХ кол-во операций СТ

• $(N/2)^2 + 1$, где N – размер информационного слова

N, бит	8	16	32	64
Максимальное				
число	17	65	257	1025
операций СТ				

Разбиение блока памяти на блоки, хранящие меньшие по информационные слова может уменьшить тах количество операций СТ

Блоки и алгоритм анализа ремонта

Результаты синтеза (28 нм)

Название схемы	S/S _{УВСР 64 бит х 1}	АТ/АТ _{УВСР 64 бит х 1}	Р/Р _{УВСР 64 бит х 1}	S _{увср} /S _{память}
УВСР 8 бит x 8	1,877	0,999	2,362	1,047
УВСР 16 бит х 4	1,451	0,997	1,801	1,083
УВСР 32 бит х 2	1,091	0,981	1,322	0,948
УВСР 64 бит x 1	1	1	1	1

Выводы по главе 2

- Разработана методология проектирования УВСР без информации о расположении поврежденных ячеек памяти.
- УВСР может применяться в СнК, содержащих любое количество блоков СОЗУ любого размера.
- Разбиение информационного слова уменьшает время ремонта в 4-60 раз.

затрат

УВСТ с учетом информации о расположении поврежденных ячеек памяти, ориентированные на сокращение времени поиска корректной конфигурации резервных элементов и на сокращение аппаратурных

Глава 3.

Методы проектирования УВСР, работающих с

Сравнение времен поиска КРЭ

- BISR-MUX2: $N_{max} = [N(N-1)/2] + 1;$
- BISR-SHIFT: $N_{max} = [N/2]^2 + 1;$
- ERR-VEC: $N_{max} = 2;$

Ν	8	16	32	64
BISR-MUX2	29	121	497	2017
BISR-SHIFT	17	65	257	1025
ERR-VEC	2	2	2	2

УВСР для 1-D резервирования?

- Архитектурам УВСР с 2-D резервированием посвящено множество работ, наиболее известной из которых является статья, описывающая алгоритм CRESTA [Kawagoe T et al 2000]
- Архитектуры УВСР с 1-D резервированием такого внимания не удостоены.
 В [Huang J. 2004] на уровне макроблоков описан способ построения УВСР для резервных строк
- Несмотря на наличие статей, упоминающих 1-D резервирование столбцами [Kim I et al 1998], описанных архитектур УВСР с 1-D резервированием автором не обнаружено

Анализатор ремонта 1 - Адрес

Элемент	Количество, шт.	Размерность (для регистров), бит	
ДШ (ШДг - АПЭ)	1		
2-вх-XOR	$([\log_2 N] + 1)*p$		
([log ₂ N] + 1)-вх-ОК	р		
р-вх-OR	1		
СПЭ	1	$[\log_2 N] + 1$	
ДШ (СПЭ - РЗ АПЭ)	1		
АПЭ	р	$[\log_2 N] + 1$	
n-вх-MUX(р в 1)	1		
ДШ (АПЭ - КРЭ)	1		
n-вх-DMUX(1 в р)	1		
А _р КРЭ	р	$[\log_2 N] + 2$	

Элемент – упоминаемый в описанном УВСР

Анализатор ремонта 2 – Вектор ошибки

Сравнение аппаратурных затрат

Сравнение временных затрат

Алгоритм СБ-ОТ УВСР

4

Ухудшение характеристик при применении СБ-ОТ алгоритма

Размерность информационного слова, бит	Адрес		Вектор ошибки	
	Ув. задержки, %	Ув. площади, %	Ув. задержки, %	Ув. площади, %
8	1,4	23,0	1,4	22,1
16	2,0	16,0	1,6	20,0
32	3,0	13,8	2,3	15,6
64	1,3	5,5	1,6	11,6

R adyas

Выводы по главе 3

- Показано, что в зависимости от способа замены основных элементов резервными преимущество по времени может достигать 1000 раз
- Представлена архитектура анализатора ремонта резервных столбцов, базирующаяся на известной архитектуре для резервных строк с сохранением адреса поврежденного элемента (I)
- Представлена архитектура анализатора ремонта резервных столбцов, с сохранением вектора ошибок (II)
- Преимущество по аппаратурным затратам для реализации II над I достигает 29 %, а по временным 35%
- Представлен алгоритм СБ-ОТ, учитывающий вероятность наличия сбитой, но не отказавшей ячейки памяти

Глава 4.

Комбинированные методы повышения сбое-и отказоустойчивости элементов СОЗУ, включающих в себя устройства саморемонта памяти

Рассматриваемые методы повышения сбое- и отказоустойчивости СОЗУ

- Побайтовый контроль четности (ПКЧ)
 - Обнаружение ошибок на шинах записи/чтения и нечетного кол-ва ошибок при хранении данных
- Код исправления одиночной ошибки (КИОО)
 - Обнаружение и исправление одиночной ошибки при хранении данных
- Резервные элементы (РЭ)
 - Замена 2 отказавших столбцов в массиве

Рассматриваемые варианты реализации Слубование варианты реализации Слубование варианты реализации

Блок СОЗУ 4Кх128 можно собрать из разных массивов следующими способами:

- ▶ 4Kx8 * 16;
- ▶ 4Kx16 * 8;
- ▶ 4Kx32 * 4;
- ▶ 4Kx64 * 2;
- ▶ 4Kx128 * 1;

Аппаратурные затраты для различных комбинаций методов повышения сбое- и отказоустойчивости

Время выбоки для различных комбинаций методов повышения сбое- и отказоустойчивости

Выводы по главе 4

- При совместном использовании всех трех рассмотренных способов повышения сбое- и отказоустойчивости увеличение площади, занимаемой матрицей памяти на кристалле, составляет от 30 до 75%, а увеличение времени выборки – от 130 до 250% при сравнении вариантов с одинаковой организацией
- Разбиение блока памяти на массивы приводит к возрастанию общей площади до 1,5 – 2,3 раз и снижению времени выборки от 22 до 50 % в зависимости от количества банков и способа повышения сбое- и отказоустойчивости
- Метод КИОО+ПКЧ+РЭ при организации блока из 8-разрядных массивов позволяет покрыть наибольшее число возникающих сбоев и отказов

- RED предпочтительнее ECC для обхода отказавших ячеек памяти в качестве способа повышения ВГД с точки зрения накладываемых аппаратурных и временных затрат
- Разработана методология проектирования УВСР без информации о расположении поврежденных ячеек памяти, разбиение информационного слова уменьшает время ремонта в 4-60 раз
- Представлена архитектура анализатора ремонта резервных столбцов, базирующаяся на известной архитектуре для резервных строк с сохранением адреса поврежденного элемента (I)
- Разработана методология проектирования анализатора ремонта резервных столбцов, с сохранением вектора ошибок (II)
- Преимущество по аппаратурным затратам для реализации II над I достигает 29 %, а по временным 35%
- Представлен алгоритм СБ-ОТ, учитывающий вероятность наличия сбитой, но не отказавшей ячейки памяти
 - Рассмотрены аппаратурные и временные затраты, накладываемые комбинированными метедами повышения сбое- и отказоустойчивости СОЗУ

Спасибо за внимание!

site: www.module.ru e-mail: rusales@module.ru